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Abstract

This paper seeks to improve low-cost labeling
in terms of training set reliability (the frac-
tion of correctly labeled training items) and
test set performance for multi-view learning
methods. Co-training is a popular multi-
view learning method that combines high-
confidence example selection with low-cost
(self) labeling. However, co-training with
certain base learning algorithms significantly
reduces training set reliability, causing an as-
sociated drop in prediction accuracy. We
propose the use of ensemble labeling to im-
prove reliability in such cases. We also dis-
cuss and show promising results on com-
bining low-cost ensemble labeling with ac-
tive (low-confidence) example selection. We
unify these example selection and labeling
strategies under collaborative learning, a fam-
ily of techniques for multi-view learning that
we are developing for distributed, sensor-
network environments.

1. Introduction

Because supervised learning is constrained by the
availability of labeled data, there is extensive re-
search effort on ways to reduce the cost of
training data generation. Two such methods
are active learning (Cohn et al., 1994) and co-
training (Blum & Mitchell, 1998). Active learn-
ing efficiently uses a high-cost oracle to label the
most informative examples (e.g., those on which the
classifier has low confidence (Lewis & Gale, 1994)).
Co-training is a seminal semi-supervised learning
method (Chapelle et al., 2010) in which each classi-
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fier self-labels examples and shares with its neighbors
those on which it is most confident. Co-training com-
bines low-cost labeling with high-confidence example
selection, while active learning combines high-cost la-
beling with low-confidence example selection.

Oracle labeling by definition produces labels that are
noise-free, while labels produced by an automated clas-
sifier will be less reliable. The issue of noisy co-training
labels is one that has not received a lot of attention,
despite its implications for systems that employ co-
training. Pierce and Cardie observed that co-training
achieved an initial improvement in accuracy followed
by a subsequent decline for a noun phrase bracketing
task (Pierce & Cardie, 2001), due to “degradation in
the quality of the labeled data.” As we would expect,
noise in the labels leads to poor generalization per-
formance. Pierce and Cardie solved the label noise
problem by employing a (high-cost) oracle to label the
selected examples. Obviously, this solution may be
unacceptably expensive or infeasible in many settings.

In this paper, we investigate three questions. The first
is: under what conditions does co-training generate

unreliable labels? While Pierce and Cardie demon-
strated a case in which co-training produced unreli-
able labels, there are certainly cases where this is not
true. While investigating this question, we identified
the base learner’s robustness to label noise as an im-
portant, previously unidentified factor in co-training
success.

The second question is: how can we improve the re-

liability of low-cost labeling for multi-view learning?

We propose a solution that assumes the labelers can
communicate by querying for and sharing labels. In
this setting, we adapt strategies from ensemble label-
ing which theorize that an ensemble decision is more
reliable than an individual decision when each labeler’s
performance is better than random and the label-
ers collectively make uncorrelated errors (Dietterich,
2000). To minimize the addition of mislabeled exam-
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Figure 1. Sensitivity of co-training (MC-SLF) performance
to the choice of base learner: Naive Bayes (NB), Logistic
Regression (LOG), Support Vector Machine (SVM), or 1-
Nearest Neighbor (1NN). The top figure shows training set
reliability and the bottom figure shows test set accuracy on
four-view VLBA data. Results are averaged over 50 runs.

ples into the training set, we also allow the querying
labeler to abstain from adopting the ensemble decision
when merited.

The third question is: how can we combine the

strengths of active learning and co-training to generate

more reliable labels at low cost? We explore whether
it is possible to combine low-confidence (active) exam-
ple selection with low-cost labeling, and discuss some
preliminary results.

Finally, we unify strategies for low-cost multi-view
learning under the umbrella term collaborative learn-

ing which we are developing for multi-view, distributed
sensor networks. Collaborative learning employs ac-
tive queries and ensemble-based labeling to leverage
the information contained in different views. The goal
of collaborative learning is to quickly generate large
amounts of labeled data from only a few initial la-
beled items, while continually learning from the data

and improving in classification performance.

In this paper, we interleave these questions with illus-
trative results using data from the Very Long Base-
line Array (VLBA) (Napier et al., 1994). We digress
briefly to introduce the data set here. The VLBA
data set consists of simultaneous observations of pul-
sar B0329+54 from four of the VLBA’s ten 25-m radio
telescopes; each telescope provides a different view.
The observations are aligned across views by their
timestamps. We created a classification data set by
extracting a short segment of the time series surround-
ing each known pulse (positive) and periods without a
pulse (negative), yielding a balanced data set of 1360
examples. Pulses generally span multiple time steps,
so for each event we created a feature vector consisting
of 21 values: the flux of the central pulse or non-pulse
observation and the 10 preceding and following time
steps.

2. When is Co-training Unreliable?

Co-training in its original form trains a pair of Naive
Bayes classifiers on independent “views”, or represen-
tations, of the same (binary) initial labeled data set
(L) (Blum & Mitchell, 1998). Learning proceeds as
each classifier predicts labels on a random subset of
the shared pool of unlabeled examples (U), selects the
top p positively and top n negatively labeled examples,
and then shares them with the other learner. The val-
ues p and n are set proportionally to the underlying
distribution of examples. We refer to this example
selection strategy as MC, for most confident. A to-
tal of 2p+2n newly labeled examples are added to the
training set, and both classifiers are re-trained on their
respective views of L (Blum & Mitchell, 1998). The
process repeats for a user-specified number of rounds.
At termination, a final classifier is built by combining
the outputs of the individual classifiers.

Although co-training was originally designed for two
learners, it is simple to generalize to N learners, one
per view. At each round, a learner selects p + n ex-
amples, self-labels them, and then shares those newly-
labeled examples with all learners. All learners re-train
after their training sets are updated. We refer to the
co-training learner as MC-SLF because it self-labels
examples on which it is most confident.

We implemented the generalized form of co-training
(MC-SLF) using Naive Bayes (NB), Logistic Regres-
sion (LOG), Support Vector Machine (SVM), and 1-
Nearest Neighbor (1NN) classifiers, then ran experi-
ments on the four-view VLBA data (one learner per
view). In each experiment, we reserved 25% of the



data for testing. The remaining 75% was divided be-
tween the labeled (L, initialized with one positive and
one negative example) and unlabeled (U) pools. We
conducted 500 rounds of learning. In each round, items
were selected for labeling from 50 items randomly cho-
sen from U . At the end of each round, each learner was
evaluated on its view of the test set. Results are aver-
aged across all learners and 50 independent runs.

Figure 1 reports MC-SLF results on training set relia-
bility (the fraction of correctly labeled items) and test
set accuracy. We observe that the choice of base clas-
sifier strongly impacts the performance of co-training.
All methods start with a training set reliability of
1.0 (Figure 1(a)). Reliability for NB and SVM dips
sharply for a few rounds, then rebounds and stabi-
lizes near 98% and 94% respectively. LOG exhibits an
early, steep decline in reliability, but recovers to 92%.
For 1NN, reliability degrades monotonically to 82%.

Figure 1(b) shows that classifier accuracy degrades
along with training set reliability. Co-training has a
negative impact on learning for 1NN; test set accuracy
declines from 90% to 78%. In contrast, NB and SVM
benefit from co-training, with only 2 and 6% noise in
the training set, respectively. Likewise, LOG exhibits
learning after recovering from the initial drop in train-
ing set reliability.

The sensitivity of co-training to the choice of base
learner highlights the importance of understanding
both the base learner’s performance on the prob-
lem domain and its general sensitivity to noisy la-
bels. Curiously, the field lacks a general consensus on
how tolerant various learning algorithms are to label
noise. Several studies have tested noise sensitivity em-
pirically (Kalapanidas et al., 2003; Pechenizkiy et al.,
2006; Atla et al., 2011), with conflicting conclusions.
It may well be that no one algorithm is most tolerant
to label noise (cf. No Free Lunch Theorem (Wolpert,
1996)). NB was most robust for this VLBA data, but
it failed on the noun phrase bracketing task described
above (Pierce & Cardie, 2001).

3. Improving Label Reliability with

Ensemble Labeling

Most of the work on addressing the challenges of label
noise seeks to remove mislabeled items via preprocess-
ing (Brodley & Friedl, 1999). Methods for improving
noise tolerance include decision tree pruning and en-
semble methods. The latter helps reduce the influence
of individual mislabeled items by combining the votes
of multiple classifiers (Dietterich, 2000).

We propose the use of ensemble labeling in the multi-

view setting to improve label quality. Ensemble label-
ing presumes a networked setup where each learner can
query other members of the network (neighbors N ) for
predictions on an example of its choice. The learner
combines N ’s predictions into a single label and adds
the item to L. Effectively, each learner has access to
its own ensemble for labeling purposes. Our hypothe-
sis is that ensemble labeling will produce a more robust
prediction when self-labeling is unreliable.

Despite the capacity for robust labeling, a labeling en-
semble can still generate unreliable labels. Therefore,
we permit each learner to abstain from adding an ex-
ample to its labeled set if the ensemble predictions
cannot be unified with high confidence. If a learner
chooses to abstain, the example remains unlabeled,
the learner is not re-trained, and the process continues
with the selection of another example.

We evaluated two naive ensemble labeling strategies
with implied abstention policies. The majority vote
(MV) policy abstains unless there is agreement on the
item’s label by a majority of N . The consensus vote
(CV) policy abstains unless there is unanimous agree-
ment on the item’s label. Both strategies have been
used to detect potentially mislabeled items and filter
them from the training set in regular supervised learn-
ing (Brodley & Friedl, 1999).

Pairing the MC example selection strategy with the
MV and CV labeling strategies produces MC-MV
and MC-CV. Figure 2 compares co-training (MC-SLF)
with MC-MV and MC-CV in terms of reliability and
test set accuracy for the three classifiers from Figure 1
on which MC-SLF shows limited or poor performance
(1NN, LOG, SVM). As an upper bound on test set ac-
curacy, we also report results for MC-ORA, which is
co-training with an oracle labeler (reliability for MC-
ORA is always 1.0). MC-CV, which requires a full
consensus to generate a new label, attains the best la-
bel reliability and the best accuracy for all classifiers.
Using an SVM, MC-SLF eventually achieves the same
accuracy but at a slower rate. This is consistent with
our observation that the SVM is more resistant to label
noise than LOG or 1NN. MC-MV outperforms MC-
SLF in terms of accuracy and reliability with 1NN,
the least robust classifier, and performs equivalently
to MC-SLF otherwise.

Because MC-CV requires a consensus among neigh-
bors, it generates a smaller labeled set than MC-MV
or MC-SLF. Table 1 shows the size of the labeled train-
ing set L, averaged across all views and experimental
runs. Without abstention, the size of L would be 1002
(because L starts with 2 examples, one for each class,
and receives 2 examples for 500 rounds). However, |L|
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(a) Reliability, 1NN

0 100 200 300 400 500 600
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Rounds

La
be

l R
el

ia
bi

lit
y

 

 

MC−CV
MC−MV
MC−SLF

(b) Reliability, LOG
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(c) Reliability, SVM

0 100 200 300 400 500 600
78

80

82

84

86

88

90

92

94

96

Rounds

A
cc

ur
ac

y

 

 

MC−ORA
MC−CV
MC−MV
MC−SLF

(d) Accuracy, 1NN
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(e) Accuracy, LOG
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(f) Accuracy, SVM

Figure 2. Ensemble labeling improves performance over self-labeling on learning algorithms where co-training performs
poorly. We compare MC-MV and MC-CV to self- (MC-SLF) and oracle (MC-ORA) labeling in terms of training set
reliability (top) and test set accuracy (bottom) using 1NN, LOG, and SVM.

Classifier Average labeled set size
MC-SLF MC-MV MC-CV

1NN 1002.00 976.92 446.06
NB 995.78 809.42 513.40

LOG 994.00 942.56 600.46
SVM 978.30 961.32 648.42

Table 1. Size of labeled set after 500 rounds of learning,
averaged across 50 runs.

can be lower if, in a given round, the learner predicts
the same class for all examples (so it cannot select
an example from each class). Because CV requires
a unanimous prediction, it abstains much more often
than MV. However, the items that are added are of
higher reliability. In this case, the increased reliabil-
ity yields better performance than more frequent re-
training with less reliable labels (MC-SLF, MC-MV).
In experimental results omitted for space reasons, the
MV strategy outperforms the CV strategy as the num-
ber of learners in the network increases (and consensus
is rarer). With a nine-learner network, MV produces
larger amounts of reliable training data and achieves
higher accuracy compared to CV labeling.

4. Accelerating Learning with Active

Example Selection

We now examine how active example selection can be
applied in a low-cost learning setting. For active selec-
tion, we select items with low confidences. This is akin
to some active learning strategies, with the key differ-
ence that we do not employ an oracle to label the se-
lected items. Confidence is usually measured in terms
of posterior probabilities that are either naturally out-
put by the classifier or calibrated from the classifier
output (Niculescu-Mizil & Caruana, 2005). We for-
malize the MC and LC selection strategies as follows.
Given P (l|x) as the posterior on the learner’s predic-
tion of label l for example x, the MC strategy selects x

as argmaxx∈U maxl P (l|x), and the LC strategy selects
argminx∈U maxl P (l|x).

Figure 3 compares the performance of oracle labeling
using both selection strategies. LC-ORA is similar
to the multi-view method Co-Testing (Muslea et al.,
2006), except that Co-Testing selects “contention
points”, or examples on which the learners disagrees,
rather than those on which one learner is least confi-
dent. LC-ORA in a single-view setting is reminiscent
of uncertainty sampling (Lewis & Gale, 1994) from ac-
tive learning. MC-ORA corresponds to Corrected Co-
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Figure 3. Active example selection (LC) paired with ora-
cle labeling learns more quickly than MC paired with an
oracle. Results shown use classifier LOG.

training (Pierce & Cardie, 2001). The results show
that with high-quality, high-cost labeling, LC-oracle
improves performance at a faster rate compared to
MC-oracle. This is an accepted result from active
learning (although our experiments with 1NN and NB
show no difference between the two on the VLBA data
set).

An open research question is whether the LC selec-
tion strategy can produce strong results when paired
with low-cost labeling strategies MV and CV. Figure 4
shows preliminary results using LOG that demonstrate
the expected results from active learning. Namely,
LC selection leads to faster gains in classifier accuracy
than the MC strategy. This is in spite of both LC-MV
and LC-CV having poorer training set reliability com-
pared to MC-MV and MC-CV. However, we have also
observed cases where MC either outperforms or is on
par with LC in terms of classifier accuracy. In future
work, we will investigate the conditions under which
LC outperforms MC with low-cost labeling.

5. Collaborative Learning

The family of learning techniques (MC-MV, LC-MV,
MC-CV, and LC-CV) presented in this paper are part
of a new learning framework, called collaborative learn-

ing, that we are developing for learning in multi-view,
distributed environments. Our research hypothesizes
that if individual learners can query each other for la-
bels and share newly labeled examples, they can gen-
erate high-quality training data that quickly improves
classifier performance at the node level. The key com-
ponents of collaborative learning are example selec-
tion, label unification, and example broadcast. Fig-
ure 5 depicts a single round of collaborative learning
implemented on a fully-connected network with four
nodes. Each learner Li has its view of the labeled (Li)
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Figure 4. LC (dashed lines) example selection learns more
quickly than MC (solid lines) example selection in terms of
training set reliability (top) and test set accuracy (bottom)
using LOG.

and unlabeled (Ui) data. Here, learner 3 queries its
neighbors and receives labels l1, l2, l4 from them.

Our approach seeks to classify incoming data for dis-
tributed sensor networks that naturally produce multi-
view data. Each node of a sensor network observes the
same phenomena from a different vantage point. The
goal is to make reliable decisions in situ, enabling fast
responses to local events and conditions. Real-world
situations in which this technology is needed include
classifying volcano activity using a distributed seismic
network, monitoring vehicle traffic in a highway sys-
tem, or tracking people in an airport to detect sus-
picious activity. In each case, decision-making at the
node level can trigger responses such as simultaneous
observation by an attached camera, activation of high-
cost sensors, or increasing the data collection rate.

6. Conclusions and Future Work

This paper highlights research issues that arise from
combining different aspects of co-training, ensemble
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Figure 5. A single round of collaborative learning.

learning, and active learning. Because our work on
collaborative learning is focused on the generation of
reliable training data from low-cost multi-view label-
ers, we are interested in labeling strategies that mini-
mize the injection of label noise, improve classification
accuracy relative to self-labeling, and enable the use
of low-confidence example selection in order to more
efficiently improve classifier performance.

There are several open questions and avenues for fur-
ther improvement in distributed, collaborative learn-
ing learning. Minimizing label noise is a central is-
sue. We are currently investigating the impact of dif-
ferent learning configurations and parameters such as
choice of base learner, number of initial labeled exam-
ples, network size, strategies for labeling and example
selection, and other abstention policies, to determine
their effects on training data reliability and classifier
performance.
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